NAMA: Aditya saputra
NPM: 21312089
KELAS: IF 21 C
TURUNAN ( PART 3 )
ATURAN RANTAI (CHAIN RULES)
Aturan Rantai
F(x) = sin 3x -> g(x) = sin
xh(c) = 3x
Jadi f(x) = (g° h) (x) =
g(h(x))
= g(3x) = sin
3x -> sin x
cos x
Bentuk I = y = un .
U=u(x)
= y’= n.un-1 . Dx(u)
Contoh :
1. Y = (2x -3 )10
y’ = 10. (2x -3)9 . Dx (2x -3) = 10. (2x -3)9 . 2 = 20 (2x -3)9
2. Y = (2x 3 – 2x 2 +
1 )50
y’ = 50. (2x 3 –
2x 2 + 1 )49 . (6x2 – 4x)
=
50 (6x 2 – 4x ) (2x 3 – 2x 2 +
1 )49
Bentuk II :
y = sin u
y’ = cos u . Dx(u)
y = sin x
y’ = cos x . Dx(x)
= cos x
Contoh :
1. Y = sin 3x
y’ = cos 3x . Dx(3x) =
cos 3x . 3 = 3. cos 3x
2. Y = cos 2x
y’ = - sin 2x . Dx(2x) =
- sin 2x . 2 = -2 sin 2x
3. Y = tan 3x2
y’ = sec2 3x2 .
Dx(3x2) = 6x . Sec2 3x2
4. Y = sin (cos x2)
y’ = sin (cos x2)
. Dx(cos x2)= cos (cos x2) . -2x . Sin x2
= -2x . Sin x2 . Cos (cos x2)
Dx (cos x2) = - sin x2. Dx (x2)
=
- 2x . sin x2
Bentuk III : y = sin^ u
y’ = n. sin n-1 u. Dx (sin u)
Contoh :
1. Y = sin3 4x
y’= 3. sin2 4x.
Dx (sin 4x) = 3. sin2 4x. 4. cos 4x
= 12
cos 4x . sin2 4x.
2. y = sin4 (x3+5)
y’ = 4 . sin3 (x3+5)
. Dx (sin (x3+5)) = 4 . sin3 (x3+5) . (3x2)
cos . (x3+5)
=
12x2. cos . (x3+5) . sin3 (x3+5)
3. y= tan5 (-x2+x)
y = 5 . tan4 (-x2+x)
. Dx (tan (-x2+x)) = 5 . tan4 (-x2+x) sec2 (-x2+x)
.(-2x + 1)
= 5 (-2x +1) . tan4 (-x2+x). sec2 (-x2+x)
Tidak ada komentar:
Posting Komentar